
DatasheetCryptoCAN canislabs.com
kentindell.github.io

Software emulation of SHE HSM

CryptoCAN software

CryptoCAN API

HSM API

CryptoCAN software

SHE HSM hardware driver

Application software

NVRAM driver API

CryptoCAN API

HSM API

CryptoCAN software

Software emulation of SHE HSM

Application software

AES accelerator
hardware driver

AES API

NVRAM storage 
driver

NVRAM driver API

CryptoCAN API

HSM API

CryptoCAN software

Software emulation
of SHE HSM

Application software

AES API

AES software

NVRAM storage 
driver

CryptoCAN stack options

CryptoCAN runs on top of a hardware 
security module (HSM) API that is a subset of 
the SHE HSM. For hardware with an on-chip 
SHE HSM then only the CryptoCAN stack is 
needed. 

On-chip SHE HSM AES-128 accelerator hardware

For devices with on-chip AES-128 
accelerators CryptoCAN can run on top of an 
emulated SHE HSM that uses the AES 
accelerator hardware to speed up the 
cryptographic operations. Call-backs are 
defined for storing keys in EEPROM or flash 
memory.

Pure software implementation

For devices with no cryptographic hardware 
an emulated SHE HSM using a pure software 
implementation of AES-128 is provided. Call-
backs are defined for storing keys in 
EEPROM or flash memory.

Execution times

Note 1 Receive OK first time

Without
anti-replay
30.158μs
 14.310μs

18.078μs

18.206μs

Receive frame A
Create frames

Function

Receive frame B
Verify failed

Received OK
Verify OK, replay fail

With
anti-replay
31.222μs
14.310μs

18.270μs

18.526μs 118.486μs
18.294μs

Execution times are given for the pure software emulated SHE HSM (for these figures the 
software HSM was built with key cache). Measurements were taken on an RP2040 
microcontroller (Cortex M0 clocked at 133MHz). Code was located in RAM to avoid 
eXecute-In-Place (XIP) cache memory delays.

SHE HSM operations

1 x ENC_ECB + 1 x GENERATE_MAC
1 x ENC_ECB 
1 x VERIFY_MAC 

560 bytes

Base

Receive
Transmit

Code size
44 bytes

380 bytes
Per context
Transmit

RAM data

24 bytes
40 bytes

Memory usage
The CryptoCAN software layer was compiled with 
gcc for the Arm Cortex M0. The CryptoCAN layer 
totals of less than 1Kbyte of program code. RAM 
usage is per context: one context is required for a 
given CAN frame source (e.g. for J1939 one 
context per PGN used).

Note 
1 128-bit MAC message
2 256-bit MAC message

ENC_ECB

RND

GENERATE_MAC

VERIFY_MAC

DEC_ECB

With key cache No key cache

13.654μs
13.662μs
42.430μs

114.552μs
115.470μs

SHE command

228.152μs
229.070μs

13.654μs
 19.214μs
47.822μs

120.086μs
120.998μs

233.686μs
234.598μs

AES-128 encrypt
Random number

CMAC generate
CMAC verify

AES-128 decrypt

Function

Execution times
Execution times for pure software emulated SHE HSM are given for two build variants: a key cache variant 
and a no-key-cache variant, allowing a CPU time vs. RAM tradeoff. Measurements were taken on an 
RP2040 microcontroller (Cortex M0 clocked at 133MHz). Code was located in RAM to avoid eXecute-In-
Place (XIP) cache memory delays and variability in execution time: cryptographic operations have fixed 
execution times when the CPU uses no cache or prefetch.

CryptoCAN
encode

CryptoCAN
decode

Reject

CAN frame 
Plaintext

Frame A
CiphertextFrame B 

Ciphertext

CAN frame 
Plaintext

CryptoCAN uses a publish/subscribe model: a publisher 
produces a standard CAN frame and CryptoCAN creates a 
message authentication code (MAC), encrypts the MAC and 
plaintext frame and the MAC and puts the result in two CAN 8-
byte frames (A and B) for broadcast on CAN.

The publish/subscribe model

A subscriber to the CAN frame 
receives A and B, decrypts them and 
verifies the MAC, rejecting the 
message if the verify fails.

The output at 
each subscriber 
after verification 

passes is the 
original plaintext 

CAN frame.

Key features

Development
MicroPython SDK

Canis Labs has built custom MicroPython firmware for the 
CANPico board. It uses the CryptoCAN C SDK to provide a 
CryptoCAN to the existing Python CAN API and a Python API to 
an HSM class, with key storage in on-board flash memory 
(including flash wearing). This MicroPython SDK is intended as an 
explorer and rapid prototyping development kit for CryptoCAN. 
More on the CANPico hardware go to canislabs.com/canpico. 

C SDK
CryptoCAN is distributed as generic C source with a software 
emulated SHE HSM. There are several build options:

Pure software option
CryptoCAN is designed to work with a standard HSM but many 
devices do not have this hardware. A software emulated HSM is 
available to provide a pure software solution. This is ideal for retrofitting 
encryption into existing CAN systems.

Tiny resource usage
CryptoCAN is targeted as resource constrained microcontrollers. The 
pure software CryptoCAN stack takes less than 3Kbytes of code 
space and an AES-128 encrypt operation takes just 15 microseconds 
on an Arm Cortex M0 at 133MHz.

Fast start up
In mission critical systems it is essential that a system can join a 
running system in a very short time. CryptoCAN was designed to allow 
receivers to join communication at any time without needing to 
negotiate sessions with a sender.

Bounded latencies for messaging
CryptoCAN creates two CAN frames with the same priority and timing 
as the plaintext CAN frame. The latency of the second CAN frame is 
the latency of the ciphertext message and its latency meets the 
requirements of existing CAN timing analysis to calculate worst-case 
latencies.

Standard cryptographic functions
CryptoCAN does not use proprietary cryptographic functions and relies 
on industry standard encryption algorithms: AES-128 for encryption, 
AES-CMAC for message authentication, CFB mode, and AUTOSAR 
SHE functions for random number generation and key distribution.

Standard AUTOSTAR SHE HSM support
CryptoCAN is designed to work with the AUTOSAR Secure Hardware 
Extensions standard for Hardware Security Modules: this HSM is 
widely available on microcontrollers aimed at the automotive industry.

Debug support
CryptoCAN has special support for debugging where the encryption 
wrapper is disabled (but preserving the authentication code) where the 
original frame plaintext is visible to existing CAN tools. The CPU time 
with this debug option enabled is identical (down to the clock cycle), 
allowing testing to take place without encryption and then it enabled in 
the final step without invalidating real-time testing.

Protection against replay attacks
CryptoCAN has support for preventing replay attacks by including a 
31-bit freshness value in computing the message authentication code. 
Special support is included to resolve synchronisation of freshness 
values between the time generated at the sender and the time the 
frames arrive at a receiver.

Supports publish/subscrbe model
CAN is designed as a publish/subscribe fieldbus: a single sender of a 
CAN frame publishes data in a CAN frame (typically containing sensor 
data) and multiple subscribers to the frame unpack the data they want. 
CryptoCAN directly supports this model: there is no peer-to-peer 
communication.

Memory usage

Note Used by CryptoCAN

628 bytes

AES-128 encrypt

CMAC

Load key

AES-128 decrypt

Code size
860 bytes

1076 bytes

Export key
Extend seed
Random number 308 bytes

1100 bytes
456 bytes
212 bytes

AES-128 encrypt
AES-128 decrypt

ROM data
1024 bytes
1280 bytes

Constants 112 bytes

Key cache
PRNG data

RAM data
3072 bytes

193 bytes

The HSM emulation software was compiled with gcc for the Arm Cortex M0. CryptoCAN uses only a subset of 
the functions: a total of less than 2Kbytes. The ROM data was located in RAM on the RP2040 to ensure 
cryptographic operations have fixed execution times. The RAM for the key cache is used only with the key 
cache variant and can be eliminated if the no-key-cache build variant is used.

Receive

SM_RAM_TABLES Put ROM tables into RAM
SM_CPU_LITTLE_ENDIAN
SM_KEY_EXPANSION_CACHED
SM_CODE_IN_RAM
CC_CODE_IN_RAM

CPU is little-endian
Enable key cache for faster AES-128
Put software HSM functions in RAM
Put CryptoCAN functions in RAM

CryptoCAN is independent 
of any specific CAN 
inplementation: it operates 
on an abstract CAN frame 
type and the application 
converts between abstract 
frames and the specific CAN 
driver or hardware in the 
system.

v220824-1

SHE Hardware Security Module

AES accelerator
hardwareEEPROM/flash EEPROM/flash


